Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers

2022-10-22 21:06:11 By : Ms. jenny wu

Click here to sign in with or

A new publication from Opto-Electronic Advances discusses a highly sensitive and fast response optical strain sensor.

Strain sensors play an important role in many applications such as flexible electronics, health monitoring, and soft robotics due to their superb response to mechanical deformations. At present, the reported strain sensors mainly focus on high stretchability and high sensitivity under large deformation for motion detection, yet low sensitivity under micro-deformation (≤1%) may limit their applications in micro-displacement detection and weak physiological signal monitoring.

Recently, various types of electric strain sensor based on microstructures such as islands structures, percolations and microcracks have been demonstrated for physiological signals detection. However, the complicated processing and high sensitivity to electromagnetic disturbances bring challenges to their practical applications. Alternatively, fiber based optical sensors offer attractive advantages compared with their electronic counterparts, including inherent electrical safety, immunity to electromagnetic interference, and small size.

As a combination of fiber optic and nanotechnology, micro/nanofibers (MNFs) have been attracting increasing research interest due to their potential in renewing and expanding fiber optics and flexible sensors in micro/nano scale. Especially, optical coupler based on evanescently coupled MNFs is a promising structure for highly sensitive optical sensing, as the coupling efficiency is strongly dependent on the ambient refractive index, the coupling length and the gap between the two adjacent MNFs. Recently, a highly sensitive and fast response optical strain sensor with two evanescently coupled optical micro/nanofibers (MNFs) embedded in a polydimethylsiloxane (PDMS) film is proposed.

The strain sensor exhibits a gauge factor as high as 64.5 for strain ≤ 0.5% and a strain resolution of 0.0012% which corresponds to elongation of 120 nm on a 1 cm long device. As a proof-of-concept, highly sensitive fingertip pulse measurement is realized. The properties of fast temporal frequency response up to 30 kHz and a pressure sensitivity of 102 kPa-1 enable the sensor for sound detection. Such versatile sensors could be of great use in physiological signal monitoring, voice recognition and micro-displacement detection.

The authors of this article propose a highly sensitive and fast response optical strain sensor, as shown in Figure 1a. Each U-shaped MNF has a diameter of 0.9 μm and bending radius of 50 μm. As the evanescent field decays exponentially outside the MNFs, the coupling efficiency is very sensitive to the gap between the two MNFs. Thus, any displacement between two MNFs will be reflected upon the change of optical intensity at the output port, thereby realizing highly sensitive strain sensing.

The whole structure is embedded in a PDMS film of appropriate thickness to ensure that the strain is transduced to the sensor with high fidelity. The PDMS film can isolate the sensing region from the air, thereby avoiding unpredictable signal interference caused by dust deposition and other external environmental changes. Figure 1b and c show that such a coupler is sensitive to gap widths, as the output intensity changes dramatically when gap width changes slightly. The specially designed MNFs structure and the flexibility of PDMS endow the sensor with high sensitivity and good ductility.

The sensor achieved a gauge factor of 64.5 in the range of 0–0.1% strain, and a fast temporal frequency response up to 30 kHz for sound detection. The sensor can also perform sound vibrations detection (Figure 1d) and real-time monitoring of human fingertip pulse (Figure 1e). In addition, the sensor has properties as simple device structure, low requests for light source and detector. Moreover, taking advantage of wavelength-insensitive device response, halogen tungsten lamp and spectrometer used in the experiments can be replaced by cost-effective devices, such as an LED and photodiode, respectively, which is favorable for wearable weak physiological signal sensing system.

The proposed new sensor would open a simple route to low-cost, sensitive multifunctional flexible sensors with great potential in medical health monitoring, voice recognition, and micro-displacement detection. Explore further Development of high-performance, high-tension wearable displacement sensors More information: Wen Yu et al, Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers, Opto-Electronic Advances (2022). DOI: 10.29026/oea.2022.210101 Provided by Compuscript Ltd Citation: Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers (2022, October 17) retrieved 22 October 2022 from https://phys.org/news/2022-10-highly-sensitive-fast-response-strain.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Materials and Chemical Engineering

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.